首页> 外文OA文献 >Real-Time Multiple Event Detection and Classification Using Moving Window PCA
【2h】

Real-Time Multiple Event Detection and Classification Using Moving Window PCA

机译:使用移动窗口PCA的实时多事件检测和分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a method for the detection and classification of multiple events in an electrical power system in real-time, namely; islanding, high frequency events (loss of load) and low frequency events (loss of generation). This method is based on principal component analysis of frequency measurements and employs a moving window approach to combat the time-varying nature of power systems, thereby increasing overall situational awareness of the power system. Numerical case studies using both real data, collected from the UK power system, and simulated case studies, constructed using DigSilent PowerFactory, for islanding events, as well as both loss of load and generation dip events, are used to demonstrate the reliability of the proposed method.
机译:提出了一种用于电力系统中多个事件的实时检测和分类的方法。孤岛,高频事件(负载损失)和低频事件(发电损失)。该方法基于频率测量的主成分分析,并采用移动窗口方法来应对电力系统的时变特性,从而提高了电力系统的整体态势感知能力。使用从英国电力系统收集的实际数据进行的数值案例研究,以及使用DigSilent PowerFactory构建的用于孤岛事件以及负载损失和发电骤降事件的模拟案例研究,都证明了该建议的可靠性。方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号